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In this paper we consider the effect of sinusoidal gravity modulation of size E on a 
differentially heated infinite slot in which a vertical temperature stratification is 
imposed on the walls. The slot problem is characterized by a Rayleigh number, Prandtl 
number, and the imposed uniform stratification on the walls. When E is small, we show 
by regular perturbation expansion in E that the modulation interacts with the natural 
mode of the system to produce resonances, confirming the results of Farooq & Homsy 
(1994). For E - O(1) we show that the modulation can potentially destabilize the long- 
wave eigenmodes of the slot problem. This is achieved by projecting the governing 
equations onto the least-damped eigenmode, and investigating the resulting Mathieu 
equation via Floquet theory. No instability was found at large values of the Prandtl 
number and also low stratification, when there are no travelling modes present. 

To understand the nonlinear saturation mechanisms of this growth, we consider a 
two-mode model of the slot problem with the primary mode being the least-damped 
travelling parallel-flow mode as before and a secondary mode of finite wavenumber. By 
projecting the governing equations onto these two modes we obtained the equations 
for temporal evolution of the two modes. For modulation amplitudes above critical, 
the growth of the primary mode is saturated resulting in a stable weak nonlinear 
synchronous oscillation of the primary mode. An unexpected and intriguing feature of 
the coupling is that the secondary mode exhibits very high-frequency bursts which 
appear once every cycle of the forcing frequency. 

1. Introduction 
This is a study of the effect of complex body forces on fluid motion. Such forces can 

arise in a number of ways, for example when a system with density gradients is 
subjected to vibrations. The resulting buoyancy forces, which are produced by the 
interaction of density gradients with the acceleration field, have a complex 
spatio-temporal structure depending on both the nature of density gradients and the 
spatial and frequency distribution of the vibration-induced acceleration field. Recently 
there has been a great deal of interest in the effects of such forces on fluid motion in 
connection with the effect of g-jitter, or residual spacecraft vibrations in space. There 
is a growing literature which tries to characterize the g-jitter environment, and recent 
reviews, e.g. Alexander (1990) and Nelson (1991), give a good summary of the earlier 
work on the subject. There have been a number of studies to investigate the effect of 
g-jitter on fluid motion, e.g. Amin (1988), Biringen & Peltier (1990), Biringen & 
Danabasoglu (1991), Alexander et al. (1991) and Farooq & Homsy (1994), who also 
provide references to much of the earlier work on the subject. 

Since the aim of this study is to elucidate the physical mechanisms by which such 
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complex body forces operate, we analyse a simple model problem (to be described) and 
assume that the gravitational field has a simple form of the type 

where g(x, t )  denotes the time-dependent gravitational field, go is the mean gravitational 
field, Q* is the frequency of the single-harmonic component of oscillation, and k is the 
unit vector pointing vertically downward. Thus the gravitational field is seen to consist 
of a mean field and a single oscillatory term that corresponds to vertical oscillation of 
the system with scale E and frequency O*. 

In an earlier study, Farooq & Homsy (1994) investigated the response of a 
differentially heated cavity to a time-dependent gravitation field of the type given by 
( 1 ) .  However, the results were limited to the case where the aspect ratio of the cavity, 
A (defined as the ratio of the characteristic vertical dimension to the lateral dimension), 
was fixed at unity and the modulation scale, E ,  was assumed to be small. Then by 
considering perturbation expansions in e they were able to obtain a hierarchy of 
equations which were investigated in the parameter space consisting of the Rayleigh 
number, Ra, the Prandtl number, Pr, and the dimensionless forcing frequency, Q, 

g(x, t )  = go( 1 + e cos Q*t)  k ,  (1) 

defined as 
ago A TD3 , P r = - ,  V Q =  Q* . Ra = 

UK K go ad TD/ v ’ 
v and K in the above expressions are the kinematic viscosity and the thermal diffusivity 
respectively, a is the coefficient of volumetric expansion, D and AT are the characteristic 
length and temperature scales. 

They report that the response of the cavity, which consists of an O(E) harmonic time- 
dependent part and an O(2) steady-streaming part, shows a strong dependence on the 
frequency of the modulation. Strong resonances are reported at O(E) when the forcing 
frequency matches the frequency of the natural eigenmodes of the system. However the 
O(e2) streaming response has been reported to show only very weak interaction with 
the natural modes. The response of both the components decays asymptotically as the 
forcing frequency becomes large. In this study we relax these two assumptions of small 
e and aspect ratio fixed at unity by investigating E - 1 and including the effect of aspect 
ratio, A ,  as an additional parameter through a model slot problem. 

It is interesting to consider the effect of the aspect ratio because as is well known 
from a number of studies treating the case of convection driven by a constant 
gravitational field, e.g. the classical work of Batchelor (1954), that the aspect ratio is 
an important determinant of the overall response of the system to the applied 
temperature gradient. Batchelor (1954) showed the existence of three regimes of flow 
depending on the parameters Ra, A :  (i) the conduction regime, when Ra is low, A 
arbitrary; (ii) the boundary-layer regime, obtained in the limit Ra+oo, A - O(1); and 
(iii) a transition regime which lies in between the two. Later Gill (1966) used boundary- 
layer theory to further investigate regime (ii) and showed that in this limit, the cavity 
is divided into two domains: boundary layers forming close to the lateral walls and a 
central core which shows vertical stratification of temperature. He showed that the 
boundary-layer thickness scaled as (Ru /A) -~ ’~ ,  and the core stratification varied 
inversely with the aspect ratio. 

The stability of the steady two-dimensional laminar flow in a thermally driven cavity 
has an even stronger dependence on the aspect ratio. Paolucci & Chenoweth (1989) 
have done full two-dimensional numerical simulations for the transient heating 
problem and shown that A is a crucial parameter in determining the stability of the 
cavity and the particular modes that first become unstable. They report the existence 
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FIGURE 1. The geometry of the slot problem 

A Rac Critical mode 

1 2 x  lo8 IW 
2 3 x 107 IW 
3 7 x  lo6 BL 
4 2 x  lo6 BL 

10 3 x 105 BL 
TABLE 1. Data taken from Paolucci & Chenoweth (1989) that shows the competition between the 

IW and BL modes as the aspect ratio is varied, for Pr = 0.71. 

of two kinds of travelling modes : travelling waves associated with the instability of the 
wall boundary layers, and internal gravity wave modes that represent sloshing motion 
of'the stably stratified central core of the cavity. There is competition between these 
modes as the aspect ratio is varied. Table 1, which has data for Pr = 0.71, shows that 
the critical Rayleigh number, Ra,, is strongly dependent on the aspect ratio of the 
cavity. Also the internal wave (IW) and boundary layer (BL) modes compete as the 
aspect ratio is varied, with the BL mode dominating at higher aspect ratios. 

With regard to the gravity-modulated problem, the study of Farooq & Homsy 
(1994) while limited to A = 1 and small e showed the possibility of resonances of the 
modulation with the characteristic internal wave modes of the system. Numerical 
constraints limited them to Ra < lo', and for this range of Ra they found strong 
interaction with internal wave modes present in the system. However, we know (from 
other works, see table 1 for example) that by suitably changing the aspect ratio, the 
boundary-layer mode can be made dominant. It is also conceivable that the two modes 
could be made to come in simultaneously, leading to the possibility of degenerate 
modes. Thus varying the parameter A leads to the prospect of interesting new 
possibilities which this study aims to understand. 

In view of the numerical difficulties associated with the boundary-layer behaviour 
found in heated cavities, we consider a well-known model problem for tall cavities: an 
infinite differentially heated slot as shown in figure 1 with a constant vertical 
temperature stratification imposed on the walls. This slot problem, first proposed by 
Elder (1965) has since been extensively investigated to understand the stability 
behaviour of tall cavities when the gravity is held constant. The slot problem offers 
considerable advantage because the base flow is parallel, thus greatly simplifying the 
equations. 
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In this study, we wish to investigate the behaviour of this model slot problem in the 
presence of gravity modulation. We will proceed as follows. In $ 2  we will recount many 
of the well-known results for the slot problem for the constant-gravity case, with 
special emphasis on relating the results to well-known results for tall cavities. This 
section will provided much of the apparatus that will be used for the gravity-modulated 
problem. 

We include the effect of modulation in three stages. In $ 3  we consider the effect of 
gravity modulation when 8 is small allowing perturbation expansion of the variables, 
following Farooq & Homsy (1994). In $04 and 5 we examine the effect of gravity 
modulation with E N 0(1), by considering the time-dependent evolution of the velocity 
and temperature fields using low-dimensional dynamical systems based on modal 
expansions. In 94 we consider a one-mode model and in $ 5  a two-mode model of the 
slot problem. Finally in $6 we offer a summary and some conclusions. The appropriate 
literature will be reviewed in each of the sections. 

2. Slot problem: formulation and stability in the absence of gravity 
modulation 

The slot problem consists of an infinite vertical slot, with a constant vertical 
temperature stratification, S ,  imposed on the boundaries, in addition to the constant 
lateral temperature drop, AT, across the walls (see figure 1). We will first develop the 
equations for the unmodulated problem, i.e. when E = 0. We use D, the slot width, as 
the characteristic lengthscale, v / ( g ,  aATD) as the characteristic timescale, and AT is the 
temperature differential applied between the walls : AT also serves as the characteristic 
temperature scale. Using these characteristic length, time and temperature scales, we 
rescale the dimensional starred variables to yield 

0* 
A T  

$* @ = -  Y =  
go a A  TD3/ v ’ 

where Y, 0, and t are the dimensionless streamfunction, temperature and time 
respectively. The following dimensionless groups arise in the equation : Ra, Pr and Q, 
defined previously and E ,  the scale of the modulation. The Grashof number is defined 
as Gr = Ra/Pr.  

We set up a coordinate system with the origin on the left (hot) wall. The sense of the 
(horizontal) x-axis is positive from left to right, and the vertical y-axis is positive from 
bottom to top. Using this coordinate system and the dimensionless variables defined 
above, the full Boussinesq equations for the transport of vorticity and energy written 
in streamfunction form are given by 

(2) 1 Gr(i3, V 2 Y +  J( Y, V’Y)} = V4Y- 3, 0, 
Ra@, 0 + J(Y, Y)} = V 2 0 ,  

where J(u, Y) = uy u, - u, vl / .  The boundary conditions for the streamfunction and 
temperature are 

( 3 )  1 Ul(O,Y, 0 = W , Y ,  0 = 0 = ‘Y,(O,Y, f) = %(l ,Y ,  0, 
@(o,y, t )  = ; + 7 B y ,  @(l,y, t )  = - ; + 7 B y ,  

where 7B = S / ( A T / D ) ,  and is the fifth dimensionless group that defines the problem. 
We find a relationship between the imposed vertical temperature stratification and the 
aspect ratio of the cavity by appealing to the asymptotic results of Gill (1966) who 
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FIGURE 2. (a) Temperature and (b) velocity of the base state for y = 1, 12. 

showed that in the boundary-layer regime, the core stratification of the cavity is related 
to the aspect ratio by 

Thus for a cavity of given aspect ratio, an equivalent slot problem can be constructed 
for Ra B 1. 

2.1. Parallel-$ow solutions 
Equations (2) admit a steady parallel-flow solution. Thus seeking solutions of the type 
Y = q ( x )  and 0 = 0,(x) + 7B y in (2) we obtain 

rB = 0 .5 /A .  (4)  

Yc-@h = 0, O,”+RarB Yi = 0, 

where we have used primes to denote derivatives with respect to x. The boundary 
conditions become 

q ( 0 )  = K(1) = 0 = ! q O )  = q (l), 

0,(0) = 1, @,(I) = 0. 

Let !Pi = -v above; then the above two equations can be combined giving 

where y4 = 
solution (as given by Bergholz 1978) 

viv + 4y4v = 0, ( 5 )  
Ra. This equation, proposed and solved by Elder (1965) has the 

0, = Re [-8f1(4 +f-l(x>>l, 
sinh [( 1 +mi) yx] - sinh [( 1 +mi) y( 1 - x)] 

sinh [( 1 +mi) y] where f X x )  = 

We note that the sole remaining parameter in the equations is y. How do the velocity 
and temperature profiles depend on y? This is shown in figure 2 for y = 1, 12. As can 
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be seen, for low y the heat transfer is dominated by conduction (hence the nearly linear 
temperature profile). At larger values of y most of the lateral temperature gradients 
exist only in a small region close to the walls, forming boundary layers. Since the 
velocity fields are set up by vorticity production due to thermal gradients, the velocity 
profiles also show a similar behaviour. 

2.2. Stability of the parallel flow 
This steady laminar flow becomes unstable when Gr is high enough. The stability of the 
steady parallel-flow solutions given by U,, 0, can be examined in the usual way by 
considering the evolution of (small) superimposed disturbances which we denote 
as YD, 0,. Therefore the total flow field, which is the sum of the base flow and the 
superposed disturbances, is given as 

[ y(x,Y' "3 = [ %(x> ]+ [ yD(x,Y, 
(6) @(x, y ,  t, @I)(~) + rB y y ,  t> ' 

Substituting this expansion in (2) and linearizing, we get the following equations for the 
disturbance quantities : 

where Yb = - v  as before and V2Yo = -v'. These are subject to the boundary 
conditions 

yD(o, y ,  t> = yD( 3 y ,  t> = = V',,(o, y ,  t )  = yDz(l 3 y ,  t) ,  

@D(o,y, t )  = 0, @D(l,y, t )  = 0. 

These linear disturbance equations can be subjected to suitable normal-mode analysis 
to give the stability behaviour of the slot. Therefore, seeking travelling wave solutions 
of the form 

yD(x,  Y I  '1 Edx) ei(ky+ht) 

[ Q D ( x ,  y ,  = [&dx)l 
gives equations identical to Bergholz (1978) which are written as 

where 

ihB, %+ H, V,  = 0, 

ikvVE + ikv") Gr - V: 
(ik0; - rB a,) Ra 

H, = "- 

where we have used V i  = a,,-k2. The boundary conditions are 

&/ = gy = 0, x = 0,1, 
= 0, x = 0, l .  
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Investigator Pr A Expt. Gr, Model Gr, 

Elder (1965) 1000 19 3.3 x lo2 3.4 x lo2 
Vest & Arpaci (1969) 0.71 33.33 8.7 x 103 8.9 x 103 
Hart (1971) 6.7 25 1.9 x 1 0 4  1.2 x 104 

TABLE 2. A comparison of experimentally observed critical Gr, with predictions of the model 
problem. 

If k is assumed real and given, equations (8k(11) can be solved as an eigenvalue 
problem in h with Re[ih] > 0 yielding growing solutions. 

The stability of the slot flow has been extensively investigated by Bergholz (1978), 
who also provides references to much of the earlier work with the model. Experimental 
evidence for instability in tall cavities suggests the existence of both travelling and 
stationary modes (Elder 1965). Bergholz (1978), among others including Mizushima & 
Gotoh (1976) and Iyer (1973), explored these instability modes via numerical solution 
of equations (8)-( 1 l), where Gr acts as a bifurcation parameter. We thus seek solutions 
in the parameter space Pr, y, k .  The critical Gr so obtained is minimized over all k,  
yielding Gr,, the minimua critical Gr over all possible wavenumbers. We thus need to 
explore the solutions in the parameter space Pr, y. Bergholz (1978) shows that 
solutions to equations (8k( 1 1) yield two competing modes : a travelling mode, driven 
by shear at low Pr and by buoyancy when Pr is large; and a stationary mode. At low 
Pr, the travelling mode dominates when y is large, but at high Pr the travelling mode 
is dominant when y is small. Thus there is a critical value ye for any given Pr when the 
instability type changes from travelling to stationary mode. The success of the model 
in accounting for the stability behaviour of tall cavities is shown in table 2 (taken from 
Bergholz 1978), where the critical Gr is tabulated for the onset of instability from the 
model (as given by (8)) together with the experimentally obtained values of the critical 
Gr by Elder (1965), Vest & Arpaci (1969) and Hart (1971). As can be seen the 
agreement is excellent. 

2.3. Solution to the eigenvalue problem 
Equations (8k( 1 1) have been solved numerically by standard second-order finite 
differences. The resulting system of equations yields a generalized algebraic eigenvalue 
problem that has been solved by well-known techniques (Moler & Stewart 1973). The 
accuracy of the solutions has been verified by mesh refinement. In this subsection we 
describe the solutions of equations (8)-(1 l), with special reference to long-wave 
solutions which will be found (in $3)  to have a special significance for the model slot 
problem when the gravity is modulated. 

While Bergholz (1978) has made a distinction between stationary and travelling 
modes of instability, we have found not one, but two types travelling modes : shear or 
buoyancy driven travelling modes as he describes, and modes that describe internal 
wave type of motion in the centre of the slot. Figure 3 shows the numerically computed 
eigenvalue spectrum for the case Pr = 0.73; y = 12; k = 3.52; Gr = 700.9 x lo3. For 
this choice of parameters, 7B = 0.16. The real part of the eigenvalue (on the x-axis) is 
plotted versus the imaginary (oscillating) part. As can be seen all eigenvalues have 
negative real parts and are thus all damped. The dominant mode is given by a pair of 
complex-conjugate eigenvalues with extremely small ( - lo+) real part and hence very 
nearly approximates a neutral mode close to the bifurcation point. The first 
subdominant mode sits on the real axis and thus represents a stationary mode. 
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FIGURE 3. The eigenvalue spectrum, y = 12, Pr = 0.73, Gr = 700.9 x lo3, T~ = 0.16, k = 3.52. 

However, in figure 3 we find also a number of other travelling modes which, far from 
being randomly distributed, all fall in a rather neatly formed ‘pitchfork’ pattern. The 
‘handle’ of the pitchfork consists of the real axis and the modes lying on it are 
stationary modes of zero frequency. As we move from left to right along any one of 
the two ‘prongs’ of the pitchfork, we encounter modes of decreasingly small damping, 
while the frequency rises and reaches a maximum value. We will now present a scaling 
argument to show that the modes that lie on this patchfork pattern are internal wave 
modes and this maximum value of frequency is the Brunt-Vaisala frequency. We 
remark that the argument is only valid because the internal wave modes can have a 
frequency no higher than the Brunt-Vaisala frequency. Thus we consider that the most 
weakly damped of these modes (which we will henceforth call the least-damped IW 
mode or simply the IW mode) has an eigenvalue the imaginary part of which is 
x 3.935 x Casting the Brunt-Vaisala formula for the frequency N of linear waves 
in an infinite quiescent stratified medium in our scaling we obtain 

Substituting the parameters for the test case given by figure 3 in the above formula we 
obtain N = 4 . 8 0 9 x  As can be seen this is in agreement with the frequency 
obtained by solving the full eigenvalue problem and leads to strong suspicion that these 
modes are indeed internal wave modes. This is confirmed by considering other cases, 
where again the frequency of the least-damped IW mode shows exactly the same 
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Test case parameters Freq. from (8H11) Ratio Brunt-Vaisala frequency 

y = 12; Pr = 0.73 
k = 3.52; Gr = 700.9 x lo3 4.8092 x 1 3.9352 x 

y = 12; Pr = 0.73 

y = 12; Pr  = 2.92 

y = 16.97; Pr = 0.73 

k = 3.52; Gr = 350.45 x lo3 9.6184 x 2 7.958 x 10-4 

k = 3.52; Gr = 700.9 x lo3 2.4046 x 2 1.8387 x 

k = 3.52; Gr = 700.9 x lo3 9.6174 x 2 7.858 x 10-4 

1 - 

TABLE 3. The frequencies of the IW wave modes as predicted by the eigenvalue problem compared 
with the Brunt-Vaisala formula for linear waves. The third column shows the ratio of the frequency 
with 4.8092 x lod4, thus clarifying the scaling behaviour. 

scaling in y, Pr, Gr as equation (12) requires. This is shown in table 3 where the 
frequency of the internal wave modes as given by equations (8)-( 11) is compared to 
(12). In row 1 we show the case mentioned previously, with Pr = 0.73, y = 12, Gr = 
7.009 x lo5, k = 3.52, and the frequencies obtained by the two methods, namely solving 
the full eigenvalue problem (3.935 x and using the Brunt-Vaisala frequency 
(4.809 x are also noted. To study the scaling behaviour of the frequencies we 
have reduced the value of Gr by a factor of in row 2 of table 3, and both the 
frequencies double, consistent with the Brunt-Vaisala formula. Similarly in rows 3 and 
4 we have examined the scaling with respect to Pr and y and have found the behaviour 
to be consistent with (12). This offers convincing evidence that the modes in question 
are indeed IW modes. 

The reason for the agreement between the frequencies predicted by (8)-(11) and (12) 
is made quite clear by considering the main equations (8)-(11) in the limit of large y 
(when boundary layers form): the base velocity and its gradients are non-zero only in 
a small boundary layer close to the wall, thus outside the boundary layer, v(x)  = 0 = 
v”(x). Similarly temperature gradients are zero outside the boundary layer, leading to 
OL(x) = 0. These vanishing velocity and thermal gradients outside the boundary layer 
imply that the diffusion of heat and vorticity can be ignored in the core. With the 
above-mentioned approximations, (8)-(11) can be reduced to a single equation (of 
higher order) in which N reappears : 

(13) 

This equation governs inviscid internal waves in a quiescent medium. It yields 
travelling wave solutions of frequency N,  which explains the agreement previously 
noted in table 3.  

The eigenvalue spectrum shown in figure 3 depends on four parameters: Pr, T ~ ,  k 
and Gr. We now investigate the nature of the spectrum as the core stratification of the 
cavity is varied. In figure 4 we show the eigenvalue spectrum for T~ = 0.05, 0.01, while 
holding the other parameters fixed. As the stratification becomes weaker the internal 
wave modes tend to weaken and disappear. This can be understood by looking into the 
mechanism by which the IW are set up. If an isotherm is titled (slightly), the stable 
density gradient tries to restore it, but it overshoots and sets up a travelling wave. 
Hence the effect of weakening the stratification is to reduce the strength of the restoring 
force and this tends to destroy the waves. The effect of Pr can also be understood in 
similar terms. Keeping Gr and y fixed, T~ is given as T~ = 4y4/(Gr Pr).  Thus for large 
Pr, T~ decreases, destroying the IW modes. 

a,, VE YD+ N 2 a x x  YD = 0. 
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FIGURE 5. The spectra corresponding to (a) case I and (b) case I1 in the long-wave limit. 

11 

One final parameter is the axial wavenumber k. We will find in 8 3 that the long-wave 
modes (corresponding to k = 0) are of particular relevance to the forced problem. 
Hence we show in figure 5 the eigenvalue spectra for two different P r :  case I Pr = 0.73, 
Gr = 700.9 x lo3, y = 12, T~ = 0.16, k = 0, and case I1 Pr = 10, Gr = lo4, y = 10, 
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rB = 0.4, k = 0. In both cases the dominant mode is a stationary mode; however the 
frequency of the least-damped travelling mode compares extremely well with the 
Brunt-Vaisala frequency ( N  = 4.809 x for case II), 
indicating that they are internal waves. This is important because it shows that the only 
travelling modes to survive in the long-wave limit are IW modes. 

for case I and N = 6.3 x 

3. The effect of small-amplitude modulation: resonances 
In this section we will examine the infinite-slot problem when the gravity is 

modulated, but the amplitude of the modulation, E ,  is small. The full governing 
equations for the gravity-modulated problem are given by 

Gr(8, V2 Y + J( Y, V2 Y)}  = V4 Y - a, 0( 1 + E cos Qt}, 

Ra(a, 0 + J( Y, 0)) = V20. (14) 

In the limit of small E we seek perturbation solutions to (14): 

(15) 

At O ( E ~ )  we recover the base-flow solutions given in the previous section. At O(E) we 
get the equations 

subject to the boundary conditions 

$l(O,Y, 0 = $ l ( L Y ,  0 = 0 = $l,(O,Y, t> = $I,(LY> 0, 
6l(O,Y, 0 = 0;  8,(LY,  0 = 0. 

We note that since (16) is linear, and the buoyancy term a, 0, cos Qt is a function of x 
alone, equations (16) admit parallel-flow solutions of the form 

giving, 

where B, and H,, are obtained by setting k = 0 in the definitions for 5, and H,, 
equations (9) and (lo), and 

For the long-wave approximation (k  = 0) equation (17) is a real-valued equation, and 
hence it is possible to solve it by the method of complex embedding. We therefore set 

3 l ( X >  
V, = Re [ < e'",], 

= [ B,(x) ]  
in equation (17) giving 

(iQB,+H,) = 8; 
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0 
52 Q 

FIGURE 6 .  The frequency-amplitude response curves for streamfunction and temperature 
fields at O(.s). 

$,(x) and G,(x) denote the response amplitude. Thus we see that the solutions to the 
forced problem given by (18) are intimately related to the long-wave (k  = 0) modes of 
the eigenvalue problem, (8)-(11). In the previous section we have seen that in the long- 
wave limit the IW modes are the only travelling modes to survive. It should be possible 
to excite them in the context of equation (18). This is what has been seen by Farooq 
& Homsy (1994) with reference to a cavity of aspect ratio unity. Consider figure 6 
which shows the frequency-amplitude response curve for case I1 of the previous 
section. The maximum value of the streamfunction and temperature (over the domain) 
have been plotted versus the driving frequency 52. As can be seen we get a resonant 
response for the streamfunction when 52 x 6.0 x (note that the numerically 
computed eigenfrequency of the dominant mode IW was 6.065 x The response 
of the temperature field does not show any resonances and goes to zero asymptotically 
as the driving frequency becomes large. One interesting point to be noted is that no 
evidence of any excitation of the stationary modes when SZ = 0 was found. 

Thus we see that the slot problem under gravity modulation produces resonances 
with natural modes of the system. This will be the basis of our study of the effect of 
larger-amplitude modulation, which is the subject of the next section. 

4. Effect of modulation when E N O(1): parametric instability 
Investigations of the stability of time-dependent fluid systems have mainly focused 

on sinusoidal time variation of three classes of flows : parallel shear flows, buoyancy- 
driven flows, and centrifugally driven (Rossby) flows. In the first category work has 
been done on the stability of Stokes layers (Kerczek & Davis 1974). They consider 
infinitesimal two-dimensional disturbances and find that the flow is stable even at very 
large values of a characteristic Reynolds number based on the frequency of oscillation, 
and the Stokes-layer thickness in agreement with experimental evidence. However 
Kerczek & Davis (1976) while considering the stability of a slot with density 
stratification in which the flow is driven by an oscillating wall (as compared to an 
oscillating buoyant force as in our case) found that the flow can be destabilized under 
suitable conditions of oscillation amplitude and frequency. This is similar to Gresho & 
Sani (1970) who consider the stability of a horizontal layer of fluid heated from above 
or below for the case of a time-dependent buoyancy force which is generated by 
shaking the fluid layer. They too find that statically stable eigenmodes of the 
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Rayleigh-Benard problem can be made unstable by suitably choosing the modulation 
amplitude and frequency. Work on modulated Couette and Rossby flows has been 
reviewed by Davis (1976). 

Despite the range of geometries and operative mechanisms involved in all these 
classes of problems, the following general picture hold true: proper choice of the 
amplitude and frequency of the modulation can lead to dramatic modification in 
behaviour of the flow, resulting in dynamic destabilization of stable systems, or vice 
versa. 

There is a remarkable similarity between the modal dynamics of these infinite- 
dimensional systems and a simple pendulum with modulated pivoting, as first pointed 
out by Gresho & Sani (1970). The latter problem is governed by the Mathieu equation 
(see Stoker 1950), for which it can be shown via Floquet theory that for the right 
choice of modulation frequency and amplitude, unstable hyperbolic points for the 
unmodulated problem become attracting limit cycles, and stable centres yield unstable 
cycles (with hyperbolic PoincarC sections). 

In this section we examine the effect of buoyancy modulation on the eigenspectrum 
of the steady problem which we have computed in $2. The most relevant dynamics of 
the linear problem are governed by the most-dangerous eigenmode. Hence we 
construct a finite Galerkin projection of the full nonlinear operator on the spectral 
eigenmodes of the linearized operator. This leads to a truncated system of dynamical 
equations that governs the temporal evolution of the modes under excitation. 

4.1. Mathematical formulation 

We consider the infinite-slot geometry defined previously. The full equations are 
(again) 

(19) 

We have seen from the linearized treatment of these equations in the previous section 
that parallel-flow solutions of this equation are relevant for the gravity-modulated 
problem. Our present concern will be to investigate the effect of finite amplitude of 
modulation. In the past we noted that the behaviour of the system for E < 1 were 
governed by the least-damped (or the most dominant) of the linear eigenmodes of the 
sy s tem . 

We seek solutions to (19) by a Galerkin expansion using the eigenfunctions as trial 
and test functions. Since we know that the most relevant dynamics is (certainly in 
the small-s limit) dominated by the most-dangerous mode, we propose a severely 
truncated Galerkin expansion where we retain only the most dominant mode. Hence 
we have 

1 G ~ { ~ , v ~ Y + J ( Y , v ~ Y ~ )  = v4y/-aZ0(1 +ecosm), 

Raft), 0 + J( Y, 0)) = V2@. 

where 
%(x) 

+ ‘ B y 1  

is the parallel-flow (base state) solution to the constant-gravity problem, Yl(x, y )  and 
@,(x, y )  are the partitioned (respectively streamfunction and temperature) components 
of the eigenfunction from (8), and A(t) and B(t) are the time-dependent coefficients that 
determine the temporal dynamics of the modes. The base state has been included in the 
expansion so that the problem behaviour should reduce to the earlier asymptotic 
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results in the limit of small 8. We have seen from the linearized treatment that the 
modes that 'see' the gravity modulation are the long-wave (k = 0) modes. Hence we 
choose (q(x ,  y ) ,  0,(x, y ) )  to be the least-damped parallel-flow mode for any particular 
choice of Gr, Pr and rB. For k = 0, % = Yl(x) and 0, = @,(x). 

Substituting the expansion (20) into (19) we obtain 

1 (21) 

} (22) 

GrB(t )  Y;  = Y ~ + B ( t ) ~ - ( 0 ~ + A ( t ) O ; ) ( l + s c o s S Z t ) ,  

Ra k(t) 0, = rB Ra( 'u, + B(t) q) + 0; + A(t) ep, 
where primes denote derivatives with respect to x as before and dots denote derivatives 
with respect to time. Since 'u, and 0, satisfy (3, equations (21) simplify to 

G r g ( t )  Y;  = B(t) Y' ; " -~O~co~Ot -A( t )0~(1  +ecosOt), 

R a k ( t ) O ,  = 7BRaB(t )  Y;+A(t)O;' .  

Rearranging the second equation (22), we get 

( R a k ( t )  @,-A(t)@;l) .  (23) B(t) Y ;  = - 
1 

7B Ra 

Equation (23) can easily be manipulated to yield 

B(t) Y? = - ( R a k ( t ) O ~ - A ( t ) @ ~ ) ,  ' 

B(t) Y;  = L ( R a k j t ) @ ; - k ( t ) @ : ) .  T~ Ra 

rB Ra 

We can eliminate B(t) and Yl(x) from (24) and (22) giving 

0; rB cos O t  
Gr Gr 

(25) 
Thus we have reduced two first-order ODES in time to one of second order. Taking the 
Galerkin product in the usual way and defining 

r, = (@;,@;)A r, = (0;,0;)4 r, = (0;,0;)= Gr Ra' Gr Gr' I 
where we define the inner product as 

( a ,  b )  = J: ab* dx, 

where the asterisk denotes the complex conjugate, (25) assumes the form 

k j t ) r , + k r , + A ( T , + r , ( l  +€COSOt)) = -€rgCOSOf. (28) 

Dividing through by and introducing the new variable 

A 
€U = - 

Glr,  
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we get the following equation: 

ii(t)+zi-+u -+-(1 +€CcoSSZt) = -cosQt. (2; 1 
If we rescale time as Qt = 7 equation (30) becomes 

We recall that A is the eigenvalue obtained from (8)-(11); thus its real part, A,, denotes 
the frequency of the eigenmode. We introduce the detuning parameter, u, defined by 
SZ = gA,. Equation (31) then yields 

P 1 1 
(32) U,, + U,’+ U(p2 +p3(1 -k 8 COS 7) )  7 = - m C O S  7, 

CT u 
where 

One final transformation brings the equation into the desired form: putting 

u = q(7)exp ----7 ( a )  
which allows us to write (32) as 

(34) 

We note that (35) has the form of a Mathieu equation. Hence its behaviour can be 
investigated by Floquet theory. 

4.2. Solution of the Mathieu equation: Floquet theory 
Floquet theory can be brought to bear on equation (35), the homogeneous form of 
which we cast in the form of the standard Hill’s equation: 

(36) 
1 

7, + 7 Q(7) Y = 0, 

where Q(7) = yz  +y3  -$: + ey3 cos -7, and we note that Q(7 + 2n) = Q(7). Floquet’s 
theorem guarantees the existence of two normal solutions for (36). The normal 
solutions can be constructed as follows. Integrate (36) from 0 to 27~ (numerically if 
necessary) with the following two sets of initial conditions: 

(37) I y,(O) = 1; r;(o) = 0, 
y2(0) = 0; qL(0) = 1 .  

Then the Floquet multiplier, aFl,2 is given by the roots of the equation 

and the Floquet exponents, xF,, ,  are related to the Floquet multiplier through 
g; - a,(q1(2x) + qi(271)) + 1 = 0 (38) 
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Gr = lo4; Pr = 10; k = 0 ;  y = 10 
Eigenvalue: ih = - 0.002 170 3 _+ 0.006065i 
p, = 0.688 36 -0.00028i 
pz = -0.12287+0.001 l l i  
p, = 1.08740 

TABLE 4. The parameters of the first test case. 

Furthermore, the theorem guarantees the existence of two normal solutions which 
form a fundamental set and can be written as 

r(7) = Nl exp ( X F ,  7) + N ,  exp ( X F ,  71, (40) 

where N1(7) and N2(7) are periodic with period 2n. We immediately see from (40) that 
if Re(xF ) > 0, then limT+m ~ ( 7 )  -too. If Q(7) is a real-valued function, then r1(2n) and 
&(2n) a;; also real valued, implying that the roots of (38) are either real or complex 
conjugates. If the real part of the Floquet exponent is non-zero then we get growing 
solutions for the Hill’s equation, a phenomenon called parametric resonance. (This is 
necessarily true, because if crFl and crFz are the two Floquet multipliers, crFl crFz = 1 from 
(38), implying xF, = -xFz,  hence one of the exponential terms in (40) must grow.) 

We begin by pointing out that since Yl and 0, are complex-valued functions of x, 
the coefficients ,ul, ,uz, ,u3 in (35) are complex valued, implying that 9 in (40) is always 
a growing function of time. This can be proven for the case when Q(7) is complex 
valued, see Magnus & Winkler (1966). However this does not necessarily mean that the 
mode is unstable since 7 is related to u through (34), using which in (40) we get 

u = N,exp ( - - - ~ + + ~ , 7  ;: ) +N,exp ( -&7+xFZ7) .  2 a  

The condition for stability is thus given by 

Since xF are obtained by integrating the ODE over one period of oscillation, they are 
functioilof E .  Thus it is necessary to investigate the dependence of xF on E in order to 
determine the potential for parametric instability of (32). Therefore let us pick a test 
case, shown in table 4, corresponding to a travelling mode at Pr = 10. p,, ,uz and ,u3 
have been evaluated by (33). We proceed to construct the normal solutions for the 
Mathieu equation (35). A fourth-order Runge-Kutta method was employed to 
integrate the equations subject to the initial conditions (37). In doing this a choice has 
to be made for the values of cr and E .  Then the Floquet exponents can be evaluated 
from (38). 

Let us fix the value of cr at 1 and look at the effect of E on x F .  In figure 7, the solid 
curve shows the real part of xF plotted as a function of E .  The dashed line shows the 
real part of ,u1/2c, which of course is independent of E .  The intersection of the two 
curves gives the critical E ,  B,  x 2.07, for which we get growing solutions. Thus there is 
a critical B ,  below which the parallel-flow solutions are damped and above which they 
are unstable. 

This has also been verified by full numerical simulation of the untransformed ODE, 
(32): setting cr = 1 and the parameters ,ul, p,, p3 as given in table 4 and integrating for 
a large interval of time, say a hundred oscillations of the forcing frequency (the 
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E 

FIGURE 7. The real part of xF us. e, and its intersection with the real part of the pJ2u curve. 

integration is carried out using an accurate Runge-Kutta scheme as before), the 
solution either approaches steady oscillations or grows, depending on the choice of E .  

The results are shown in table 5 where the nature of the solution, stable (S) or unstable 
(U), is displayed for various choices of e. The table confirms the results of the Floquet 
theory and shows that for E > 2.07 we get growing solutions. The nature of the solution 
is further shown in figure 8 where (a) shows steady periodic oscillations and (b) shows 
growth due to parametric resonance. 

Before we move on to investigate the effect of frequency of modulation on E,, we 
consider the effect of the choice of the eigenmode that is used as the basis of the 
expansion (20). We find that if a more strongly damped mode is used, then the 
instability threshold is higher: selecting a mode corresponding to the eigenvalue 
ih = -0.0044+0.005 13i, the coefficients of the evolution equation then are pl = 
1.809 1 1 - 0.006 52i, p2 = - 0.5884 - O.O508i, p3 = 1.5004. The value of E ,  is calculated 
to be 3.41 and is higher than the value obtained earlier. This trend has been verified for 
other modes as well. 

4.3. Parametric dependence : efect of frequency, Prandtl number and stratijication 
We have seen for the test cases studied that there exists a critical modulation amplitude, 
E,, above which the modulated parallel flow is unstable. We are interested in the 
dependence of this result on the parameters of the problem. We investigate the effect 
of the frequency of modulation, by considering the effect of changes in the detuning 
parameter, (T. The behaviour seen as = 1, i.e. existence of an E ,  above which the 
solutions are unstable, holds as cr is varied. Hence we repeat the calculations of the 
previous subsection for various rr and the results are shown in figure 9 (a)  which shows 
E, plotted as a function of cr. Generally speaking, the value of E ,  appears to increase at 
high (T indicating that high-frequency modulation is not very effective in producing 
parametric instabilities. The behaviour at lower cr is more complicated. The curve 
shows several maxima and minima. The minima occur at (T x 1.6,0.8,0.55,0.40,0.325, 
0.275, . . . . Note that the constant term in Q(7) has real part, QR = Re [ pz + p3 -,4/4] x 
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FIGURE 8. The effect of c on the full Mathieu equation for E = 0.3 and E = 2.2 showing stable (S) 
and unstable (U) solutions by direct integration. 

(a) E Nature of solution (b)  E Nature of solution 

1 .o S 1.4 U 
1.5 S 1.3 U 
2.0 S 0.9 U 
2.1 U 0.8 U 
2.2 U 0.7 S 

TABLE 5. The nature of solution, stable periodic oscillations (S) or growing unstable (U) solutions 
as B is varied: (a) Full numerical simulation of (32); (b)  full numerical simulation of (43). 

0.8. Hence the minima seem to come at approximately 2QR, QR, $QR, $Q,, gQR and 
AQ . Further we note that the lowest value of E ,  over all B occurs at v E 1.7 or E 2QR. 
3 . R  
It is remarkable that the minima should occur at simple rational fractions of QR, and 
this is almost certainly (though perhaps not simply) related to the well-known stability 
chart (not presented here) of the Mathieu equation. For small B equation (35) becomes 
extremely stiff and hence we rely on the WKB method which is outlined in Appendix 
A. The result shows that for the limiting case of B+O, E ,  z 2.05. 
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FIGURE 9. (c)  Pr. FIGURE 9. The effect on the stability limit of (a) frequency (b) T~ and (c) Pr. 
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‘8 Gr Pl Pz P3 

0.1 8 x lo3 1.898-0.00032i -0.9366-0.000544i 1.654 
0.2 9~ 103 1.084 x 0.00030i -0.3053-0.000027i 1.214 
0.3 1 x lo4 0.806-0.00028i -0.1687-0.00008Oi 1.119 

TABLE 6. The variation of the coefficients pl, pz, and p3 as T~ is varied. The other parameters are fixed 
at the same values as table 1 : Pr = 10, k = 0. Gr is determined at each value of T~ so that the damping 
of the eigenmode is 2 x lo+, the same as in table (4). 

We have examined in some detail the effect of the parameters 52 and e in destabilizing 
the eigenmodes corresponding to the steady problem, and have calculated the critical 
values of E for which the instability is triggered. There are two other parameters in the 
governing equations : the stratification 7B and the Prandtl number, which we will look 
into briefly now. Decreasing the stratification seems to have the effect of raising the 
stability limits, by increasing the value of ec, as shown in figure 9(b). The value of Gr 
for each rB was fixed so that the damping (given by the real part of ih) of the modes 
was equal to 2 x the same as that for the initial case given in table 4. In table 6 
we list the parameters and also the calculated coefficients ,ul, ,uz and ,u3. Increasing the 
Prandtl number also has the same stabilizing effect, figure 9(c). This appears to be 
consistent with the observation in $2.3 that internal wave activity becomes weaker as 
the stratification is decreased or the Prandtl is increased, with the wave modes 
disappearing altogether at extreme values of these parameters. Thus it seems plausible 
that the modulation amplitude necessary to destabilize these modes would also 
increase with both rB and Pr. 

This suggests that by pushing the parameters rB and Pr to extreme values, Pr g 1, 
7B < 1, it might be possible to alter the behaviour that has been observed thus far. For 
this we consider two cases: one with high Prandtl number Pr = 1000, y = 1, Gr = 251, 
k = 0; and a second case with small stratification and Pr N O(1): Pr = 0.73; Gr = 
8.07 x lo3, y = 1, k = 0. In figure 10 we show the eigenspectra corresponding to these 
two cases. As can be seen, all the eigenvalues lie on the horizontal axis, implying that 
Im (ih) = 0, and hence they are damped stationary modes. Thus it appears that in the 
limit of large Pr and small 7B the only modes that remain are stationary modes. Thus 
there is a curve, y,(Pr) which divides (Pr,  y )  into two regions, with the regions below 
the curve having only stationary modes. To explore this curve further we consider table 
7 in which we show the values of yp as a function of Pr for fixed Gr = 700.9 x lo3. We 
note that for y < ys there are no travelling modes present. Further, in the last column 
we have displayed the stratification 78, corresponding to ys. Surprisingly, rB has a 
nearly constant value of order 4 x This is independent of the choice of drashof 
number. Thus from the definition of y, we have the following simple expression for the 
ys curve in the (Pr,  7)-plane: 

- N  y4 10-4. 
Gr Pr 

Turning to the stability of the stationary modes when subjected to modulation, we find 
the following surprising result: the stationary modes when subjected to Floquet 
analysis (via equation (30)) were found to be stable to modulation amplitudes as large 
as e = 30. 

Thus we find that for y < ys, only the stationary modes survive in the long-wave 
limit, and these fail to interact with the modulation. We thus conclude that only the 
travelling modes of the system can interact with the modulation to produce instability. 



22 A .  Farooq and G. M .  Homsy 

-10' -100 - 10-1 -10-2 

1 .o 

0.5 

0 

-0.5 

-1.0 

I I 

(1 

.................. i .............................................................................. 

.................. .xx. )(. XI--* .x.. * i.. .# ........... 

............................................................................... 

-104 - 1 0 2  -100 -10-2 -10-4 - 10-6 

FIGURE 10. Eigenvalue spectrum for the case (a) y = 1, Pr = 0.73, Gr = 8.079 x lo3 and k = 0, and 
(b) y = 1 ,  Pr = 1000, Gr = 0.251 x lo3 and k = 0, both showing the absence of any travelling modes. 
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Y ,  7% Pr 

5.00 4.3 3.902 x 

100.00 9.8 5.260 x 
1000.0 17.0 4.760 x 

0.73 2.0 1.258 x 10-4 

10.00 5.0 3.560 x 10-4 

TABLE 7. The dependence of y, on Pr for Gr = 700.9 x lo3. Also shown is the stratification, rS,. 

In the next subsection we consider the validity of these one-mode expansions by 
comparing them to the parallel-flow solutions of the full parallel-flow equations. There 
we will also consider some cases where y < ys and validate the present results. 

4.4. Parallel-$ow solution of the full equafions 
So far we have examined the behaviour of the slot problem subjected to gravity 
modulation by a severely truncated Galerkin expansion. By reducing the problem to 
a Mathieu equation we were able to show that under suitable conditions (of large 
amplitude of modulation) the system could be made unstable via parametric resonances 
of the Mathieu equation. It is possible that this behaviour is an artifact of the drastic 
truncation of the expansion (20). We will show here that this kind of behaviour is 
endemic to the parallel-flow solutions of (19) under gravity modulation. 

The full time-dependent Boussinesq equations for parallel flow are 

Gr Yxx, = Yzxxx - Ox( 1 + ECOS Qt) ,  

Ra 0, -rB Ra YX = BXx.  
(43) 

We note that (43) are linear, and parametrically forced. In some instances it has been 
possible to extend Floquet's theorem to partial differential equations', however (43) are 
not separable and hence such an extension has not been possible in the present case. 

We interrogate (43) by full numerical simulation. For this purpose we consider case 
I of 52.3, whose eigenvalue spectrum we have shown in figure 5(a). The parameters for 
this case are Gr = 7.009 x lo5, Pr = 0.73, y = 12. The long-wave eigenmode spectrum 
for this case (figure 5a) has a travelling mode with an eigenvalue ih = 
0.6670 x _+ 0.487 x 10-3i. The stability of this mode subjected to modulation has 
been examined via (35) and (41) and for 0 = 0.487 x the critical value of E has 
been found to be 1.3. 

We now proceed to verify the validity of this value by full simulation of (43). 
Equation (43) has been numerically integrated by (i) first semi-discretizing in space by 
standard second-order-accurate central differences and enforcing the boundary 
conditions and (ii) integrating the resulting system of ODES in time by using a highly 
accurate (adaptive) solver. The forcing frequency has been chosen to be Q = 
0.487 x which corresponds to the natural frequency of the least-damped travelling 
mode in the spectrum as shown in figure 5 (a). The results are summarized in table 5 (b), 
where again (S) denotes stable solutions and (U) unstable ones. As can be seen the 

In solid-state physics for example, the motion of an electron in a crystal lattice is governed by 
the Schrodinger equation with a spatially periodic potential. Bloch (1928) showed that the 
Schrodinger equation under these circumstances admits normal solutions (called Bloch waves) which 
determine the stability of the electron motion, namely whether it will remain within the crystal or gain 
sufficient energy to be able to leave. 
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solution becomes unstable for E = 0.8. We recall that a value of 1.3 was obtained by 
applying Floquet theory to the one-mode expansion earlier. We thus conclude that the 
one-mode expansions of the governing equations considered so far succeeded in 
predicting the qualitative dynamics of the full set of equations subjected to gravity 
modulation. 

Lastly we consider two cases where no travelling wave modes exist. First, consider 
a case with high Pr = 1000; the other parameters are y = 1, Gr = 251, D = 5 x 
We found no evidence of any instability by carrying out full integrations of equation 
(43) for E as high as 100. Then we considered a case with low stratification: Pr = 0.73, 
Gr = 8070, y = 1, f2 = 5 x lop3 and again found no instability for 6 as high as 500, 
confirming the results of the previous subsection. 

5. Two-mode model of the slot 
We have seen how parallel-flow solutions of the slot become unstable to gravity 

modulation. This was first seen from the stability analysis of modal evolution 
equations and by full numerical solution of the parallel-flow equations in the last 
section. This inevitably raises the question of how these parametric resonances have 
their growth limited. 

The simplest reason for the unrestricted growth of the parallel solutions in the 
presence of modulation is that the parallel-flow equations have no nonlinear saturation 
mechanisms available to restrict growth. We recall that our studies for small E showed 
that only the parallel-flow modes would be relevant. It therefore appears that for 6 - 
0(1), this assumption is no longer true and it is necessary to bring in eigenmodes of 
finite axial wavenumber. 

We therefore augment the original modal expansion scheme to include terms of finite 
axial wavenumber k as follows : 

(44) 

where C.C. denotes the complex conjugate. Substituting the above expansion into the 
full equations (2) we find terms of the following three types: proportional to eiky, eioy 
or parallel-flow terms independent of y ,  and eiZky. Thus collecting terms independent 
of y we have respectively for the vorticity transport and the energy equation 

Gr[B, YUy + B: Y:”] + ikDD*Gr[@,( Y;”’- k2 Y:’) - @;( !Py - k2 Y;) 

I Y = ul,(x) + B(t) q ( x )  + D(t) ‘y(x) eiky + . . . + c.c., 

0 = ~ , ( x ) + ~ ~ y + A ( t ) 0 ~ ( x ) + C ( t ) ~ ~ ( x ) e ~ ~ ~ +  ... +c.c., 

+ @;( Y;”- k2 Y:) - @:’( Y l -  k2 ‘y)] 

= BYY’;”+B*Y:’“-[AO~+A*0:’](1 +scosD~),  (45) 

Ra[A, 0, +A: 03 +ik Ra[DC*( 0;‘+ Yh0:)- D*C( Yv,* @;+ Y:‘ O,)] 
- rE Ra BY’ + rB Ra B* Y *‘ = A@; +A*@:“. (46) 

Similarly collecting terms proportional to eiky, we get the following two equations : 

Gr Dt( Y i  -k2%) + (ikGr D[Y, Y r  - (Y l -  k2%) Yh] 

+ ikGr DB[ % Y 1’ - (Y - k2 K) Yi] + ikGr DB*[ lu, Y:rr’- (Yg - k2%) Y:’] 

= D[ YF- 2k2Yi + k4%] - C0;(1+ ECOSSZ~), (47) 
Ra C, 0, + D[ik Ra Oh-rE Ra Y; ]  + ADik Ra % 0; + A*Dik Ra lu, 0:’ 

- CBik Ra 0, Yi - CB*ik Ra 0, ‘1.:’ - C[ik Ra 0, Yh + ((9:- k20,)] = 0. (48) 
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We now form Galerkin dot products in the usual way, giving the following dynamical 
system of equations for the time-dependent Fourier coefficients : 

v l l  B,+vl2B~+v1,DD* = u ~ ~ B + ~ / ~ ~ B * + E v , , c o s Q ~ + ( ~ ~ , A + v , , A * ) ( ~  +t.cosQt), 

(49) 

v ~ ~ A ~ + v ~ ~ A : + v ~ ~ D C * + ~ / ~ ~ D * C + V ~ ~ B + ~ / ~ ~ B *  = v , ,A+v , ,A* ,  (50) 

(51) 

(52) 

v~~ D, + vZ2 D + v~~ DB + vZ4 DB* = vz5( 1 + E cos Qt)  C,  

v41 C, + v4, D + u~~ AD + v44 A*D+ v45 CB+ v46 CB* + v47 C = 0. 

The definitions for the coefficients in (49)-(52) are given in Appendix B. Equations 
(49)-(52), rescaled as 

A, = € A ,  B, = EB, C, = EC, D, = ED, 
assume the form 

(53) 

vgl A,, + A,*, + EV,, D, C,* + E V , ~  0: C, + v3& B, + v , ~  B,* = v3, A ,  + u3* A,*, (55) 
vZ1 D,, + vZ2 D, + t.vZ3 D, B, + evz4 D, B,* = vZ5( 1 + E cos Qt)  C,, (56) 

vgl C,, + u42 D, + ev4, A ,  D,+ ~v~~ A,* D, + E V ~ ~  C, B, + ev4, C, B,* + v47 C, = 0. (57) 

This system of four equations represents the evolution equations when two modes (and 
their complex conjugates) are used in expansion (44). We note that (54)-(57) are 
nonlinear and non-autonomous. Since A,, B,, C,, D, are each complex valued, (54)-(57) 
can each be separated into real and imaginary parts, thus yielding a dynamical system 
in nine-dimensional phase space. 

The nonlinear terms in (54)-(57) have been underlined. The quadratic nonlinearities 
arise from the nonlinear convective terms in the energy and vorticity transport 
equations and represent coupling between the parallel-flow and finite-wavenumber 
modes, or between complex-conjugate parallel-flow modes. In the next subsection we 
will examine the method of solution of these equations. 

5.1. Numerical results 
To understand the behaviour of (54)-(57) we need to make a particular choice for the 
coefficients. Let us consider the case that was examined in $4.4, choosing Pr = 0.73, 
Gr = 7.009 x lo5, and y = 12, for which we have found the least-damped parallel 
eigenmode to have an eigenvalue ih = 0.6670 x 10-4_+0.487 x lO-,i. We also noted in 
$4.4 that this eigenmode becomes unstable when subjected to gravity modulation for 
E > 1.3 at its natural frequency. Henceforth we will refer to this mode as the primary 
mode. 

If a second finite-wavenumber mode is to come into play in the dynamics, the natural 
choice for this mode would be the one that is least damped over all the wavenumbers. 
This is found to be a travelling mode at k = 3.52 with eigenvalue ih = 
0.3252 x f 1.6903 x lO-,i, which we will henceforth refer to as the secondary 
mode. With this choice of modes in (44) the coefficients in (54)-(57) can be evaluated 
with the aid of (B 1)-(B 4). Thus we can now investigate the behaviour of the dynamical 
system (54)-(57). It has been solved using a highly accurate adaptive solver for time 
integration. The accuracy of the solutions has been verified by mesh refinement. We 
will discuss these solutions in the coming subsections. 
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FIGURE 11. (a) Re[BJ showing linear forced response. (b) Re[DJ showing 
decaying oscillations. E = 0.1. 

5.2. Nonlinear stability of the unmodulated problem 
We begin by pointing out that the modes that we have picked are both linearly damped 
modes. This raises the question of whether, in the absence of modulation, the solutions 
to the initial value problem (54)-(57) decay to zero at t < 03. The damping rate of the 
two modes is quite small (0.6670 x respectively) and they are 
therefore very near the bifurcation point. We can easily determine if this bifurcation is 
subcritical by taking (54)-(57) for the unmodulated slot problem obtained by setting 
cos52t identically to zero, and solving them using a wide variety of finite-amplitude 
initial conditions. Following this procedure, as far as we could determine the 
bifurcation is not subcritical. Thus the dynamics of the unmodulated problem are given 

and 0.3252 x 
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FIGURE 12. (a)  Re[BJ for e = 1.31, showing growth and saturation. (b) As (a)  but on a larger 
scale, showing saturation to a steady oscillation. 

by the linearized form of equation (54b(57) which predicts that both modes decay at 
t + o .  

5.3. Small-e modulation of the two-mode problem 
We now turn to the modulated problem, where we begin by taking small E .  Consider 
figure 11 where we show a sample of results for E = 0.01. Recall that we have eight 
dependent variables in the dynamical system (54)-(57). Here figure 1 1  (a)  shows the 
temporal evolution of Re[B,] and figure I l ( b )  shows Re[D,]. These plots are 
representative of the dynamics of the two modes, i.e. the primary mode oscillates and 
the secondary mode decays for small e. We note that the oscillation of the primary 
mode is produced by the inhomogeneous forcing term in (54). There is no 
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FIGURE 13. Re [DJ for B = 1.3 1 ,  showing high-frequency bursting with recurrence synchronous 
with driving frequency. 

inhomogeneous forcing term in (56) or (57) which accounts for the decay of the 
secondary mode. We have alluded to this earlier by saying that it is only the primary 
mode that is directly forced by the modulation. Thus we find that in the limit of small 
e the secondary mode is not excited and the only activity is due to the forced 
oscillations of the primary mode. 

This can be seen from (54b(57) in the limit E +  0. Thus upon linearizing, we are left 
with the following linear system: 

(58) vll Be, + v12 B,*t = v14 Be+ v15 B,* + v16 cos Qt + (v17 A, + v18 A,*) (1 + ~ C O S  Qt) ,  

vQ1 A,, + v32 A,*, = - ' 3 5  Be-  v36 B,* + v37 A, + ' 3 8  (59) 

(60) 

(61) 

These represent two decoupled, parametrically forced, linear systems the stability of 
which can be examined by Floquet theory. We have already mentioned that the 
primary mode is stable for e < 1.3 and is thus stable in the limit of small e which we 
are at present considering. The second system has been found to have a critical ee2 = 
2.9, and thus it is also stable in the limit of small e. 

vZ1 D,, = - vZ2 D, + vZ5( 1 + ccos Qt) C,, 

v~~ C,, = - vq2 D,- v~~ C, = 0. 

5.4. Eflect of E on two-mode dynamics 
What happens when e is increased? We have numerically verified that the behaviour 
seen for small e holds so long as e < ecl. For E > eel, the primary mode becomes 
unstable and grows in accord with Floquet theory. In the absence of any nonlinear 
saturation mechanisms this growth would continue unchecked making the solutions 
unbounded at t-tco. The effect of the nonlinear terms, as we shall presently see, is to 
limit the amplitude of the growing mode thus keeping the solution bounded. In figure 
12(a) we plot the evolution of Re[BJ over time for E = 1.31 which is only slightly 
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FIGURE 14. (a) The energy spectrum EReCB,, for E = 1.31. Note the peaks at the fundamental forcing 
frequency and the higher harmonics. (6) Energy spectrum EReD, for E = 1.31 showing broad-band 
high-frequency content of bursts. 

higher than eC1 = 1.30. We note that the solution shows transient growth, but for t > 
4.0 x lo6 it equilibrates and the amplitude reaches its steady value. This behaviour is 
also seen for Im[B,] and the real and imaginary parts of A, which have thus not been 
shown. In figure 12(b) we show the steady-state oscillations of Re[B,] (on a larger 
scale), which are periodic with period T = 2n/Q = 12901.8. Thus the oscillations are 
synchronous with the driving frequency. The steady-state behaviour of Re [D,] is 
shown in figure 13, and is seen to consist of periodic bursts, which again occur with 
period T = 12901.8; thus there is one burst for each cycle of the driving frequency. 
This behaviour is also seen with Im [DJ and C, (not shown). We now begin to see the 
mechanism by which the primary mode is saturated: the primary mode becomes 
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FIGURE 15. Phase, tan$, of nonlinear term D,Cy for E = 1.31. 

unstable and starts to grow. The secondary mode, which is linearly damped, only gets 
excited when the amplitude of the primary mode is large enough to overcome the 
damping. The excess of energy which the primary mode gains from the gravity 
modulation over each period of the driving frequency (which is potentially capable of 
producing growth) is now pumped into the secondary mode, and used in overcoming 
the damping present in that mode. Thus there is a periodic burst in the secondary mode 
which consumes just enough energy to prevent unstable growth of the primary mode. 
This kind of bursting behaviour has also been seen by Aubry et al. (1988) who have 
modelled the wall region of a turbulent boundary layer by expanding the Navier-Stokes 
equations using experimentally determined streamwise rolls as the basis functions. The 
resulting dynamical system showed intermittency or bursts and they have tried to relate 
this to ejection and bursting events observed by Kline et al. (1967) in a turbulent 
boundary layer. 

In figure 14 we show the energy spectra of Re [BJ and Re [DJ, EReIBe1 and EReID,] 
respectively. As can be seen (in figure 14a) the energy for Re[B,] shows a peak at 
4.7 x lop4 which corresponds to the driving frequency, and several smaller peaks at the 
superharmonics of the driving frequency. Figure 14(b) shows that Re [DJ has a broad- 
banded energy spectrum, with a broad peak at a frequency of = 0.033 which is much 
higher than the driving frequency of 0.487 x 

This kind of intermittency in dynamical systems theory is often associated with the 
existence of two states: a quiescent laminar state in which the solution trajectory 
spends most of the time, and a second unstable state, with high-frequency bursts being 
the result of state switching. In order to explore the mechanics of these bursting 
phenomena further, we interrogate the nonlinear terms in the dynamical system 
(54F(57). Consider (551, which has the nonlinear terms D, C,* and D,* C,. Since D, and 
Ck are each complex valued, D, C,* is also complex valued. In figure 15 we show the 
phase (or the complex argument, tan $ = Re [D, C,*]/Im [D, Ck]) of the nonlinear term 
D, C,* as a function of time for c = 1.3 1. The scale of the y-axis has been arbitrarily 
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FIGURE 16. (a) Re[D,] at E = 1.43. Note that the response consists of two peaks. 
(b) Re[BJ at E = 1.43 showing the ‘spike’. 

limited to the interval (- 10, lo), and we therefore treat the boundary values of the 
interval, & 10, as numerical ‘infinity’ for the tangent function, tan $. It is evident from 
the plot that the phase shows very high-frequency oscillations. However, despite the 
high-frequency noise, two states are distinguishable: a state where the phase tan $ x 
-4, and another state when tan$ is positive, but only slightly greater than zero. 
Thus there is an almost fn phase jump between these two states, which is accompanied 
by very high-frequency oscillations. It is possible to identify the first state with the 
quiescent laminar region of the secondary mode (compare with figure 13) and the 
second state with the turbulent burst of the secondary mode, because they coincide in 
time. Thus the following picture emerges: the secondary mode spends most of the time 
in the first state, where the nonlinear term has a negative sign and thus limits its growth. 
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FIGURE 17. Re[AJ at E = I .40 showing the onset of the tertiary instability. 

This corresponds to the quiescent region of the secondary mode; however, there is a 
second state which is unstable and switching between these states is accompanied by 
high-frequency oscillations. 

As E is increased, the initial growth of the primary mode becomes more rapid, 
making the saturation process even more nonlinear. It eventually reaches a steady state 
as before, but the response of the secondary mode shows a curious splitting, seen in 
figure 16(a), which shows Re[D,] for E = 1.43. In figure 16(b) we show the steady 
response of Re[BJ also at 6 = 1.43 where a ‘spike’ has developed in the periodic 
oscillations. The onset of this tertiary instability seems to occur at E z 1.4 (shown in 
figure 17), and the secondary burst becomes stronger as E is increased further (as shown 
previously in figure 16a)). Figure 18 shows the energy spectrum, EB,, ED, for E = 1.43. 
EB, has many higher harmonics at 2, 3,4 ,  5 , 6 , 7 , 8 , 9  times the fundamental frequency. 
ED, shows a very broad peak with energy at very high frequencies. In figure 19 we show 
the phase of the term D, C: for E = 1.43. Again we see two states as before; however 
the second state appears to be more distinct, with less noise from high-frequency 
oscillations, indicating that the trajectory does indeed spend some time in this state. 
Since the phase of the nonlinear term differs in the second state by in, this weakens the 
nonlinear saturation mechanism, which might help explain the tertiary instability or 
spike that has been observed. 

5.5. Eflect of varying the parameters 
The two-mode problem is governed by five parameters: 7B, Pr, Gr, k and 0. The effect 
of T ~ ,  Pr, Gr and k on equations (54)-(57) is felt through the coefficients computed via 
(74k( 10 1). 

In the previous subsection we have seen that the value of eel, the critical modulation 
amplitude for the primary mode, plays a critical role in determining the overall 
dynamics of the problem. A detailed parametric study of the behaviour of cc1 has 
already been carried out in 94.3 and we recall this in connection with the present two- 
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FIGURE 18. (a) Energy spectrum, EReCB,, for F = 1.43, showing higher harmonics. (b)  Energy 
spectrum, EReD, for E = 1.43, showing broad-band high-frequency content of bursts. 

mode problem : increasing the stratification is destabilizing whereas decreasing Pr has 
the same effect. The influence of frequency of eCl is complicated, but higher frequencies 
raise the threshold, eel. At lower frequencies, the value of ecl shows many bounded 
maxima and minima, approaching the value 2.05 in the limit of quasi-static modulation. 

Further we noted in $4.3 that in the limit of large Pr and small stratification, it was 
no longer possible to excite the parametric instability of the primary mode. This has 
an immediate effect on the results of the two-mode model of this section as well. If the 
primary mode shows no parametric instability, then the secondary mode simply damps 
out and decays. 

There are other parameters to consider. Noting that varying the frequency can alter 
the value of eel, we now turn to an interesting question. In the previous subsection, we 
studied a case where the threshold of modulation-induced instability was lower for the 
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FIGURE 19. Nonlinear term D,C: for e = 1.43. 

primary mode than the secondary, i.e. eCl < cC2. We now ask what would happen if 
eCz < eel implying that the secondary mode has a lower threshold of modulation- 
induced stability than the primary. 

This situation can be realized by considering the case of the previous subsection at 
a forcing frequency given by Q = I .7 x The values of E ~ ~ , ~  for this value of Q have 
been estimated to be eC1 = 4.5 and eC2 = 3.6 as computed by (58)-(61). Thus according 
to the linearized equations (58)-(61), E , ~  < eel. 

We expect therefore, that for eC2 < t: < ec1 the secondary mode would start to grow 
first, until the nonlinear saturation becomes strong enough to take effect. However, this 
scenario is not born out by the solution of the full nonlinear equations (54)-(57). For 
eCZ < t: < eel, the secondary mode simply decays. Only when t: > eCl and the primary 
mode starts to grow does the secondary mode get engaged as we have seen in the 
previous subsection. 

The reason for this behaviour is not hard to find. The primary mode is driven by the 
inhomogeneous term in (54) and thus has a non-zero, oscillating solution. Thus it is not 
accurate to ignore it (as we have) in (54)-(57) except when E is small. Since we are using 
E - 0(1), the results of the linearized equation for the secondary mode are likely to 
yield inaccurate results as we have verified. 

However it is conceivable that there might be other parameter regimes where the 
secondary mode might indeed become unstable first. We have not found any case 
where this happens, and this reinforces the assumption we made earlier that in the 
context of the slot problem it is the parallel-flow modes that dominate the dynamics of 
the flow. 

6. Summary and conclusions 
In this paper we have investigated a slot problem subjected to gravity modulation. 

We began by studying the linear stability of the laminar base flow in the case of a steady 
gravitational field, and found three types of modes : travelling boundary-layer modes, 
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stationary modes and internal wave modes associated with the stratification in the slot. 
We noted that the internal wave modes are the only oscillatory modes to survive in the 
long-wave k = 0 limit, and these disappear too when the Prandtl number is very high 
or the stratification is low. 

To examine the effect of gravity modulation, we first assumed small-amplitude 
modulation by considering regular perturbation expansions of the equations in E and 
showed the existence of resonances when the modulation frequency matches the 
frequency of the natural modes of the system. Next we examined the stability of the 
long-wave eigenmodes of the slot problem when subjected to gravity modulation of 
O(1) magnitude. This was achieved by projecting the governing equations onto the 
least-damped eigenmode, and recasting the resulting dynamical equation into the form 
of a Mathieu equation which was then investigated via Floquet theory. The chief 
conclusion is that the parallel-flow modes can be made unstable when subjected to 
modulation of suitable amplitude. We have examined the effect of the forcing 
frequency on E, ,  the critical modulation amplitude that triggers the instability, and the 
results show that E ,  is generally high for large frequencies, but for small frequencies the 
behaviour is complex. At very low frequencies, the equation becomes very stiff and we 
have therefore used WKB theory to find the stability limit for quasi-static modulation. 
We verified that the one-mode expansion of the parallel equations for the slot problem 
gave an accurate representation of the relevant dynamics of the problem by comparing 
with the results of full simulation of the parallel-flow equations for the slot. The critical 
value of the modulation amplitude, e,, for instability in the two cases was 1.3 and 0.8 
respectively. Thus they show qualitative agreement. To consider the effect of varying 
the parameters we looked at the effect of stratification on the stability and found that 
when stratification is small, or Pr is large, the internal wave presence is weak, and hence 
the IW modes are more stable to gravity modulation. Finally we noted that in the limit 
of extremely high Pr or low stratification, the flow cannot be destabilized by the 
modulation. 

We noted that the parallel-flow equations have no nonlinear saturation mechanisms, 
which allows the solution to grow without bound. To overcome this difficulty we 
undertook a two-mode expansion of the problem with the primary mode being the 
least-damped parallel-flow mode as before and a secondary mode of finite wavenumber. 
By projecting the governing equations onto these two modes we obtained the equations 
for temporal evolution of the two modes. A detailed numerical solution of these 
evolution equations showed that so long as the value of E was kept below the critical 
value for the instability of the primary mode, the primary mode oscillated 
synchronously with the forcing and the secondary mode decayed. But when this critical 
value of E was exceeded, the primary mode started to grow until the growth was 
saturated by nonlinear coupling with the secondary mode. As a result of this coupling 
the secondary mode is excited and shows intermittent ‘bursts’, which appeared once 
every cycle of the forcing frequency. Thus excess energy from the primary mode is used 
to excite and sustain the (otherwise damped) oscillations of the secondary mode. 

The authors acknowledge the support of NASA, Grant NAG-3-1475. 

Appendix A. The effect of quasi-static modulation: + 0 
We start with equation (36), 

1 
vTT + 2 Q(7) v = 0, 



36 A .  Farooq and G. M .  Horns-v 

and wish to find its solution in the limit U+ 0. In accordance with the standard WKB 
technique we seek solutions for the form 

7 = exP(;G(T,;)), 

where G has a straightforward expansion in terms of u. Differentiating (A 1) twice 
yields 

Substituting for 7, y', 7" in the linear equation (36), we transform it into the following 
nonlinear equation : 

1 1 1 
U2 U U2 
-G"+-G''+-Q = 0 

and G 2 + c r G + Q  = 0. (A 3) 

G(7; U )  = G0(7) + gG1(7) + . . . . (A 4) 

We seek a straightforward expansion for G in the form 

Equating the coefficients of uo and u to zero, we obtain 

Gi2 + Q(7) = 0, Gi + 2GI, G; = 0. (A 51, (A 6) 

It follows from (A 5)  that Gh2 = - Q(7), so that 

Gh = & i(Q(7))'/'. 

Then, Go = i(Q(7))'/' d7. 

To solve (A6), we divide it first by 2G; and obtain 

1 Gg 
2 Gb 
--+Gi = 0 

which, upon integration gives 
G, = -In (G;)'l2. 

Substituting for Go and G, in (A4) and using (A 1) we get after some simplification: 

Equation (A 1 1) provides two linearly independent approximate solutions of (36) in the 
limit u + 0. Now the integrand in (A 1 1) is a complex-valued oscillating function. We 
want to find the imaginary part of its mean asymptotic slope, denoted as S .  For 
stability (using (34)) we get the criterion 

S =  Im lim- Q1/'d7 < Re [,:.,;ddlS 1 [:I 
and Q denotes the time averaged value of Q. 
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E S 

1 .o 0.0849 
1.5 0.2260 
1.8 0.2937 
2.0 0.3345 
2.05 0.3444 
2.1 0.3537 
2.2 0.3721 

TABLE 8. The variation of the parameter S as a function of B. 

The value of S has been calculated as function of E and is shown in table 8. The value 
of $p1 z 0.3441 from table 4. Thus the stability limit for the quasi-static case is attained 
when c: z 2.05. 

Appendix B. Definition of the Galerkin coefficients 

product of (45) with Yy, we get 
In this Appendix we define the coefficients that appear in (54)-(57). Taking the dot 

vll = (Gr Yy, YT), v12 = (Gr Y:”, YUy), (B 1 a, 6) 
v13 = (ikGr [$,( Y:’” - k2 Y:’) - $:( Y r  - k2 YL) 

+ $i(Yu,*”- k2Yg) - $;’( !Pi - k2K)], Yy), (B 1 C) 

v14 = (Y?, YY), V15 = (Yy:i”, Yy), V16 = (-Oh, Yy), (B 1 d-f 1 
(B 1 g, h)  v17 = ( - @;, Yy), v18 = ( - @:’, Y;). 

Similarly, taking the product of (46) with O,, we get 

’31 = (@I, @,>, 1.’32 = (Or, O , ) ,  v33 = ((‘yz 0:’ + Yi  O:), O , ) ,  (B 2a-c) 

v34 = ((p,* @;+ Y,*’O,), O , ) ,  v35 = -rB Ra<Y;, O,), (B 2 4  e) 

v36 = - rB Ra(YY:’, O , ) ,  v37 = (Oy, O , ) ,  v3* = (OT”, 0,). (B2 f-h) 

Taking the dot product of (47) with Yi-k2!&& we get 

vZl = Gr(YE-k2!&, Yi-k2K), 

~ 2 3  = ikGr([K Yy-(Yi-k2Y/Z) Y;] ,  (Yi-k2K)), 

vZ4 = ikGr([K Y~”’-(Yi-k2!f$) Y:’], (Y; -k2q) ) ,  

v,, = (Oi, !Pi - k2 Y2) ; 

(B 3 4  

(B 3 4  

(B 3 d) 

(B 3 4  

V z z  = ikGr ([ U, Y;-( Yi-k2K) Yh] - [ !J?g - 2k2 + k4 “51, (Y i  - k2 K ) ) ,  (B 3 b) 

and finally, taking the dot product of (48) with 0, we obtain 

v41 = Ra (02, O,) ,  v42 = Ra (ikK Oh-rB Y;, 0,), (B4a,b) 

(B 4 c-e) 

v46 = -ikRa(@,YY:’,O,), v47 = ( - i k R a 0 , Y ’ ; , - O ~ - k 2 0 2 , 0 2 ) .  (B4f,g) 

u43 = ikRa < % @;, @,>, v44 = ikRa < OF’, O,) ,  v45 = -ikRa (0, !Pi, @&, 
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